AndroidBaseFrameMVVM
AndroidBaseFrameMVVM 是一个 Android 工程框架,所使用技术栈为:组件化、Kotlin、MVVM、Jetpack、Repository、Kotlin-Coroutine-Flow,本框架既是一个可以开箱即用的工程框架基础层,也是一个很好的学习资源,文档下面会对框架中所使用的一些核心技术进行阐述。该框架作为个人技术积累的产物,会一直更新维护,如果有技术方面的谈论或者框架中的错误点,可以在 GitHub 上提 Issues,我会及时进行回应。希望这个框架项目能给大家带来帮助,喜欢可以 Start🌟。
项目地址:AndroidBaseFrameMVVM
Demo
以鸿洋大神的玩安卓开放 Api 做了简单的页面示例,仓库地址:WanAndroidMVVM
框架图示
谷歌 Android 团队 Jetpack 视图模型:
模块
app:
app 壳 工程,是依赖所有组件的壳,该模块不应该包含任何代码,它只作为一个空壳存在,由于项目中使用了 EventBusAPT 技术,需要索引到各业务组件的对应的 APT 生成类,所以在 app 壳 内有这一部分的代码。
buildSrc:
这是一个特殊的文件夹,负责项目的构建,里面存放着一些项目构建时用到的东西,比如项目配置,依赖。这里面还是存放 Gradle 插件的地方,一些自定义的 Gradle 的插件都需要放在此处。
lib_base:
项目的基础公共模块,存放着各种基类封装、对远程库的依赖、以及工具类、三方库封装,该组件是和项目业务无关的,和项目业务相关的公共部分需要放在 lib_common 中。
lib_common:
项目的业务公共模块,这里面存放着项目里各个业务组件的公共部分,还有一些项目特定需要的一些文件等,该组件是和项目业务有关系的。
组件化相关
组件初始化
为了更好的代码隔离与解耦,在特定组件内使用的 SDK 及三方库,应该只在该组件内依赖,不应该让该组件的特定 SDK 及三方库的 API 暴露给其他不需要用的组件。有一个问题就出现了,SDK 及三方库常常需要手动去初始化,而且一般都需要在项目一启动(即 Application 中)初始化,但是一个项目肯定只能有一个自定义的 Application,该项目中的自定义 Application 在 lib_base 模块中,并且也是在 lib_base 模块中的清单文件中声明的,那其他组件该如何初始化呢?带着这个问题我们一起来深入研究下。
常见的组件初始化解决方案:
在我的了解范围内,目前有两种最为常见的解决方案:
面向接口编程 + 反射扫描实现类:
该方案是基于接口编程,自定义 Application 去实现一个自定义的接口(interface),这个接口中定一些和 Application 生命周期相对应的抽象方法及其他自定义的抽象方法,每个组件去编写一个实现类,该实现类就类似于一个假的自定义 Application,然后在真正的自定义 Application 中去通过反射去动态查找当前运行时环境中所有该接口的实现类,并且去进行实例化,然后将这些实现类收集到一个集合中,在 Application 的对应声明周期方法中去逐一调用对应方法,以实现各实现类能够和 Application 生命周期相同步,并且持有 Application 的引用及 context 上下文对象,这样我们就可以在组件内模拟 Application 的生命周期并初始化 SDK 和三方库。使用反射还需要做一些异常的处理。该方案是我见过的最常见的方案,在一些商业项目中也见到过。
面向接口编程 + meta-data + 反射:
该方案的后半部分也是和第一种方法一样,通过接口编程实现 Application 的生命周期同步,其实这一步是避免不了的,在我的方案中,后半部分也是这样实现的。不同的是前半部分,也就是如何找到接口的实现类,该方案使用的是 AndroidManifest 的 meta-data 标签,通过每个组件内的 AndroidManifest 内去声明一个 meta-data 标签,包含该组件实现类的信息,然后在 Application 中去找到这些配置信息,然后通过反射去创建这些实现类的实例,再将它们收集到一个集合中,剩下的操作基本相同了。该方案和第一种方案一样都需要处理很多的异常。这种方案我在一些开源项目中见到过,个人认为过于繁琐,还要处理很多的异常。
本项目中所使用的方案:
面向接口编程 + Java 的 SPI 机制(ServiceLoader)+AutoService:
先来认识下 Java 的 SPI 机制:面向的对象的设计里,我们一般推荐模块之间基于接口编程,模块之间不对实现类进行硬编码。一旦代码里涉及具体的实现类,就违反了可拔插的原则,如果需要替换一种实现,就需要修改代码。为了实现在模块装配的时候不用在程序里动态指明,这就需要一种服务发现机制。JavaSPI 就是提供这样的一个机制:为某个接口寻找服务实现的机制。这有点类似 IOC 的思想,将装配的控制权移到了程序之外。这段话也是我复制的别人的,听起来很懵逼,大致意思就是我们可以通过 SPI 机制将实现类暴露出去。关于如何使用 SPI,这里不在陈述,总之是我们在各组件内通过 SPI 去将实现类暴露出去,在 Application 中我们通过 Java 提供的 SPI API 去获取这些暴露的服务,这样我们就拿到了这些类的实例,剩下的步骤就和上面的方案一样了,通过一个集合遍历实现类调用其相应的方法完成初始化的工作。由于使用 SPI 需要在每个模块创建对应的文件配置,这比较麻烦,所以我们使用 Google 的 AutoService 库来帮助我们自动创建这些配置文件,使用方式也非常的简单,就是在实现类添加一个 AutoService 注解。本框架中的核心类是这几个:lib_base-LoadModuleProxy、lib_base-ApplicationLifecycle。这种方案是我请教的一个米哈游的大佬,这位大佬告诉我在组件化中组件的初始化可以使用 ServiceLoader 来做,于是我就去研究了下,最后发现这种方案还不错,比前面提到的两种方案都要简单、安全。
资源命名冲突
在组件化方案中,资源命名冲突是一个比较严重的问题,由于在打包时会进行资源的合并,如果两个模块中有两个相同名字的文件,那么最后只会保留一份,如果不知道这个问题的小伙伴,在遇到这个问题时肯定是一脸懵逼的状态。问题既然已经出现,那我们就要去解决,解决办法就是每个组件都用固定的命名前缀,这样就不会出现两个相同的文件的现象了,我们可以在 build.gradle 配置文件中去配置前缀限定,如果不按该前缀进行命名,AS 就会进行警告提示,配置如下:
android {
resourcePrefix "前缀 _"
}
组件划分
其实组件的划分一直是一个比较难的部分,这里其实也给不到一些非常适合的建议,看是看具体项目而定。
关于基础组件通常要以独立可直接复用的角度出现,比如网络模块、二维码识别模块等。
关于业务组件,业务组件一般可以进行单独调试,也就是可以作为 app 运行,这样才能发挥组件化的一大用处,当项目越来越大,业务组件越来越多时,编译耗时将会是一个非常棘手的问题,但是如果每个业务模块都可以进行的单独调试,那就大大减少了编译时间,同时,开发人员也不需要关注其他组件。
关于公共模块,lib_base 放一些基础性代码,属于框架基础层,不应该和项目业务有牵扯,而和项目业务相关的公共部分则应该放在 lib_common 中,不要污染 lib_base。
依赖版本控制
组件化常见的一个问题就是依赖版本,每个组件都有可能自己的依赖库,那我们应该统一管理各种依赖库及其版本,使项目所有使用的依赖都是同一个版本,而不是不同版本。本项目中使用 buildSrc 中的几个 kt 文件进行依赖版本统一性的管理,及其项目的一些配置。
MVVM 相关
- MVVM 采用 Jetpack 组件 + Repository 设计模式 实现,所使用的 Jetpack 并不是很多,像 DataBinding、Paging 3、Room 等并没有使用,如果需要可以添加。采用架构模式目的就是为了解偶代码,对代码进行分层,各模块各司其职,所以既然使用了架构模式那就要遵守好规范。
- Repository 仓库层负责数据的提供,ViewModel 无需关心数据的来源,Repository 内避免使用 LiveData,框架里使用了 Kotlin 协程的 Flow 进行处理请求或访问数据库,Repository 的函数会返回一个 Flow 给 ViewModel 的调用函数,Flow 上游负责提供数据,下游也就是 ViewModel 获取到数据使用 LiveData 进行存储,View 层订阅 LiveData,实现数据驱动视图
- 三者的依赖都是单向依赖,View -> ViewModel -> Repository
项目使用的三方库及其简单示例和资料
- Kotlin
- Kotlin-Coroutines-Flow
- Lifecycle
- ViewModel
- LiveData
- ViewBinding
- Hilt
- OkHttp:网络请求
- Retrofit:网络请求
- MMKV:腾讯基于 mmap 内存映射的 key-value 本地存储组件
- Coil:一个 Android 图片加载库,通过 Kotlin 协程的方式加载图片
- ARoute:阿里用于帮助 Android App 进行组件化改造的框架 —— 支持模块间的路由、通信、解耦
- BaseRecyclerViewAdapterHelper:一个强大并且灵活的 RecyclerViewAdapter
- EventBus:适用于 Android 和 Java 的发布/订阅事件总线
- Bugly:腾讯异常上报及热更新(只集成了异常上报)
- PermissionX:郭霖权限请求框架
- LeakCanary:Android 的内存泄漏检测库
- AndroidAutoSize:JessYan 大佬的 今日头条屏幕适配方案终极版
Kotlin 协程
关于 Kotlin 协程,是真的香,具体教程可以看我的一篇文章:
Flow 类似于 RxJava,它也有一系列的操作符,资料:
PermissionX
PermissionX 是郭霖的一个权限申请框架 使用方式:
PermissionX.init(this)
.permissions("需要申请的权限")
.request { allGranted, grantedList, deniedList -> }
资料:
GitHub: https://github.com/guolindev/PermissionX
EventBus APT
事件总线这里选择的还是 EventBus,也有很多比较新的事件总线框架,还是选择了这个直接上手的 在框架内我对 EventBus 进行了基类封装,自动注册和解除注册,在需要注册的类上添加 @EventBusRegister 注解即可,无需关心内存泄漏及没及时解除注册的情况,基类里已经做了处理
@EventBusRegister
class MainActivity : AppCompatActivity() {}
很多使用 EventBus 的开发者其实都没有发现 APT 的功能,这是 EventBus3.0 的重大更新,使用 EventBus APT 可以在编译期生成订阅类,这样就可以避免使用低效率的反射,很多人不知道这个更新,用着3.0的版本,实际上却是2.0的效率。 项目中已经在各模块中开启了 EventBus APT,EventBus 会在编译器对各模块生成订阅类,需要我们手动编写代码去注册这些订阅类:
// 在 APP 壳的 AppApplication 类中
EventBus
.builder()
.addIndex("各模块生成的订阅类的实例 类名在 base_module.gradle 脚本中进行了设置 比如 module_home 生成的订阅类就是 module_homeIndex")
.installDefaultEventBus()
屏幕适配 AndroidAutoSize
屏幕适配使用的是 JessYan 大佬的 今日头条屏幕适配方案终极版
GitHub: https://github.com/JessYanCoding/AndroidAutoSize
使用方式:
// 在清单文件中声明
<manifest>
<application>
// 主单位使用 dp 没设置副单位
<meta-data
android:name="design_width_in_dp"
android:value="360"/>
<meta-data
android:name="design_height_in_dp"
android:value="640"/>
</application>
</manifest>
// 默认是以竖屏的宽度为基准进行适配
// 如果是横屏项目要适配 Pad(Pad 适配尽量使用两套布局 因为手机和 Pad 屏幕宽比差距很大 无法完美适配)
<manifest>
<application>
// 以高度为基准进行适配 (还需要手动代码设置以高度为基准进行适配) 目前以高度适配比宽度为基准适配 效果要好
<meta-data
android:name="design_height_in_dp"
android:value="400"/>
</application>
</manifest>
// 在 Application 中设置
// 屏幕适配 AndroidAutoSize 以横屏高度为基准进行适配
AutoSizeConfig.getInstance().isBaseOnWidth = false
ARoute
ARoute 是阿里巴巴的一个用于帮助 Android App 进行组件化改造的框架 —— 支持模块间的路由、通信、解耦
使用方式:
// 1.在需要进行路由跳转的 Activity 或 Fragment 上添加 @Route 注解
@Route(path = "/test/activity")
public class YourActivity extend Activity {
...
}
// 2.发起路由跳转
ARouter.getInstance()
.build("目标路由地址")
.navigation()
// 3.携带参数跳转
ARouter.getInstance()
.build("目标路由地址")
.withLong("key1", 666L)
.withString("key3", "888")
.withObject("key4", new Test("Jack", "Rose"))
.navigation()
// 4.接收参数
@Route(path = RouteUrl.MainActivity2)
class MainActivity : AppCompatActivity() {
// 通过 name 来映射 URL 中的不同参数
@Autowired(name = "key")
lateinit var name: String
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(mBinding.root)
// ARouter 依赖注入 ARouter 会自动对字段进行赋值,无需主动获取
ARouter.getInstance().inject(this)
}
}
// 5.获取 Fragment
Fragment fragment = (Fragment) ARouter.getInstance().build("/test/fragment").navigation();
资料:
官方文档:https://github.com/alibaba/ARouter
ViewBinding
通过视图绑定功能,可以更轻松地编写可与视图交互的代码。在模块中启用视图绑定之后,系统会为该模块中的每个 XML 布局文件生成一个绑定类。绑定类的实例包含对在相应布局中具有 ID 的所有视图的直接引用。 在大多数情况下,视图绑定会替代 findViewById
使用方式:
按模块启用ViewBinding
// 模块下的 build.gradle 文件
android {
// 开启 ViewBinding
// 高版本 AS
buildFeatures {
viewBinding = true
}
// 低版本 AS 最低 3.6
viewBinding {
enabled = true
}
}
Activity 中 ViewBinding 的使用
// 之前设置视图的方法
setContentView(R.layout.activity_main)
// 使用 ViewBinding 后的方法
val mBinding = ActivityMainBinding.inflate(layoutInflater)
setContentView(mBinding.root)
// ActivityMainBinding 类是根据布局自动生成的 如果没有请先 build 一下项目
// ViewBinding 会将控件 id 转换为小驼峰命名法,所以为了保持一致规范,在 xml 里声明 id 时也请使用小驼峰命名法
// 比如你有一个 id 为 mText 的控件,可以这样使用
mBinding.mText.text = "ViewBinding"
Fragment 中 ViewBinding 的使用
// 原来的写法
return inflater.inflate(R.layout.fragment_blank, container, false)
// 使用 ViewBinding 的写法
mBinding = FragmentBlankBinding.inflate(inflater)
return mBinding.root
资料:
官方文档: https://developer.android.com/topic/libraries/view-binding
ViewModel
ViewModel 类旨在以注重生命周期的方式存储和管理界面相关的数据。ViewModel 类让数据可在发生屏幕旋转等配置更改后继续留存。
使用方式:
class MainViewModel : ViewModel(){}
class MainActivity : AppCompatActivity() {
// 获取无参构造的 ViewModel 实例
val mViewModel = ViewModelProvider(this).get(MainViewModel::class.java)
}
资料:
官方文档: https://developer.android.com/topic/libraries/architecture/viewmodel
Android ViewModel,再学不会你砍我: https://juejin.im/post/6844903919064186888
LiveData
LiveData 是一种可观察的数据存储器类。与常规的可观察类不同,LiveData 具有生命周期感知能力,意指它遵循其他应用组件(如 Activity、Fragment 或 Service)的生命周期。这种感知能力可确保 LiveData 仅更新处于活跃生命周期状态的应用组件观察者
LiveData 分为可变值的 MutableLiveData 和不可变值的 LiveData
常用方法:
fun test() {
val liveData = MutableLiveData<String>()
// 设置更新数据源
liveData.value = "LiveData"
// 将任务发布到主线程以设置给定值
liveData.postValue("LiveData")
// 获取值
val value = liveData.value
// 观察数据源更改(第一个参数应是 owner:LifecycleOwner 比如实现了 LifecycleOwner 接口的 Activity)
liveData.observe(this, {
// 数据源更改后触发的逻辑
})
}
资料:
官方文档: https://developer.android.com/topic/libraries/architecture/livedata
Lifecycle
Lifecycle 是一个类,用于存储有关组件(如 Activity 或 Fragment)的生命周期状态的信息,并允许其他对象观察此状态。LifecycleOwner 是单一方法接口,表示类具有 Lifecycle。它具有一种方法(即 getLifecycle()),该方法必须由类实现。实现 LifecycleObserver 的组件可与实现 LifecycleOwner 的组件无缝协同工作,因为所有者可以提供生命周期,而观察者可以注册以观察生命周期。
资料:
官方文档: https://developer.android.com/topic/libraries/architecture/lifecycle
Hilt
Hilt 是 Android 的依赖项注入库,可减少在项目中执行手动依赖项注入的样板代码。执行手动依赖项注入要求您手动构造每个类及其依赖项,并借助容器重复使用和管理依赖项。
Hilt 通过为项目中的每个 Android 类提供容器并自动管理其生命周期,提供了一种在应用中使用 DI(依赖项注入)的标准方法。Hilt 在热门 DI 库 Dagger 的基础上构建而成,因而能够受益于 Dagger 的编译时正确性、运行时性能、可伸缩性和 Android Studio 支持。
资料:
目前官方文档还没有更新正式版的,还是 alpha 版本的文档:使用 Hilt 实现依赖项注入
Dagger 的 Hilt 文档目前是最新的:Dagger-Hilt
Coil
Coil 是一个 Android 图片加载库,通过 Kotlin 协程的方式加载图片。特点如下:
- 更快: Coil 在性能上有很多优化,包括内存缓存和磁盘缓存,把缩略图存保存在内存中,循环利用 bitmap,自动暂停和取消图片网络请求等。
- 更轻量级: Coil 只有 2000 个方法(前提是你的 APP 里面集成了 OkHttp 和 Coroutines),Coil 和 Picasso 的方法数差不多,相比 Glide 和 Fresco 要轻量很多。
- 更容易使用: Coil 的 API 充分利用了 Kotlin 语言的新特性,简化和减少了很多样板代码。
- 更流行: Coil 首选 Kotlin 语言开发并且使用包含 Coroutines, OkHttp, Okio 和 AndroidX Lifecycles 在内最流行的开源库。
Coil 名字的由来:取 Coroutine Image Loader 首字母得来。
资料:
官方文档: https://coil-kt.github.io/coil/
三方库源码笔记(13)-可能是全网第一篇 Coil 的源码分析文章:https://juejin.cn/post/6897872882051842061
【奇技淫巧】新的图片加载库?基于 Kotlin 协程的图片加载库——Coil:https://juejin.cn/post/6844904159527829518